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Linear Parametric Models (review)

• Linear parametric models 𝑓𝑤  are linear with respect to the 
weights, 𝑤, of the model.

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑚

𝑤𝑗𝜙𝑗 𝑥𝑖
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Linear Model (Graphical Representation)

• Consider a linear parametric model without a basis function 
(feature generator, 𝜙)
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Question: How can we make this model non-
linear w.r.t. the model parameters (weights 𝑤)?

𝑓𝑤 𝑥𝑖 = ෍
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Answer: One way is to apply a non-linear 
function, 𝜎, to the output.

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1
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…
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…
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Question: Would 𝜎 𝑧 = 5𝑧 
work?
Answer: No, this is a linear 
function. This would be 
equivalent to multiplying 
each weight by 5. It doesn’t 
change the functions that can 
be represented.

Question: Would 𝜎 𝑧 = 𝑧2 
work?
Answer: Yes, this would 
result in a non-linear 
parametric model.

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗
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Note: The function 𝜎 is often called an activation function, nonlinearity, threshold function, or squashing function.
Note: This parametric model (with any nonlinear 𝜎) is called a perceptron. 5



Alternative Perceptron Graphics
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Alternative Perceptron Graphics
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Alternative Perceptron Graphics

𝑥𝑖 𝑓𝑤 𝑥𝑖𝜎Σ
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Alternative Perceptron Graphics

𝑥𝑖 𝑓𝑤 𝑥𝑖

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

Note: This is most common when 
working with many perceptrons, 
connected together in some way.
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Perceptron

Output from 
previous neurons

Dendrites
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Cell 
Body

Axon

Perceptrons can be viewed as 
extremely crude simulations of 
neurons.
• Roughly speaking (ignoring 

important aspects of biology and 
neuroscience), when enough of 
the inputs to a neuron are 
activated, the neuron becomes 
sufficiently stimulated and “fires” 
(it becomes activated).

• We can select 𝜎 to be similar to a 
threshold function. 
• If the weighted sum is below 

some threshold for the neuron 
to be activated, 𝜎 outputs 0 
(not firing). 

• If the weighted sum is above 
the threshold, 𝜎 outputs 1 
(firing).

The “activation function” decides 
whether the “neuron” is firing 
based on the weighted sum.10
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Threshold ≈ 15

Note: This model 
typically outputs 0 or 
1, which may not be 
what we want for our 
parametric model. We 
will revisit this later.

Note: 𝜎 squashes the 
output to the range 
[0,1], hence the name 
squashing function. 11



Perceptron vs Neuron

• Perceptrons are extremely crude models of real neurons.
• Real neurons do not switch between firing and not firing, but 

instead change the rate at which they fire.
• More realistic parametric models of neurons are called “spiking neuron 

models”
• Real neurons don’t just compute a weighted sum of the inputs.

• They consider the timing of different inputs arriving.
• Complex calculations can result from dendritic morphology.

• Neurons experience fatigue.
• Roughly speaking, when a neuron fires at a high rate for too long, 

chemical changes force it to fire less frequently.
• And much, much more…
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Training Non-Linear Parametric Models

• We train non-linear parametric models using gradient descent!
• Later we will discuss how the necessary derivatives can be 

computed.
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Neural Networks: Parametric Models 
Comprised of Many Perceptrons
• Recall the graphical representation:

• Idea: Connect many perceptrons together.

𝑥𝑖 𝑓𝑤 𝑥𝑖

𝑥𝑖

… …

This is tedious and 
too many arrows!
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Neural Network Graphical Depiction

𝑥𝑖

… …

Idea: Use boxes to represent 
layers (columns) of perceptrons.

𝑥𝑖
…

Here arrows between boxes 
denote fully connected layers.
• Each perceptron in the right-

layer takes the output of each 
perceptron in the left-layer as 
input. 15



Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• In the context of neural networks, perceptrons are often called 
units.

• Each layer can have different numbers of units.
• The number of units in a layer is often called the “size” of the layer.

Layer 1 Layer 2 Layer 3 Layer L

…
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• The input, 𝑥𝑖  is called the input layer.
• The last layer is called the output layer.
• All layers between the input and output layers are called hidden 

layers.

First 
Hidden 

Layer

Input 
Layer

Second 
Hidden 
Layer

Third 
Hidden 

Layer

Output 
Layer

…
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• Sometimes the input layer is represented by its own rectangle.
• This layer simply outputs 𝑥𝑖.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 

Layer

Output 
Layer

…
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• The number of units in the output layer should equal the number 
of outputs of 𝑓𝑤 𝑥𝑖

• For the GPA-prediction task, 𝑥𝑖 ∈ ℝ9 and 𝑦𝑖 ∈ ℝ.
• So, the output layer should have one unit.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 

Layer

Output 
Layer

…
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• If the output of the parametric model should not be “squashed” to 
[0,1], the squashing function (activation function) can be omitted 
from the output layer.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 

Layer

Output 
Layer

…
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Activation Function: Sigmoid

• Sigmoid functions are a class of S-shaped functions.
• The most common one is called the logistic function.

• It is so common that it is often called “the” sigmoid function.

• 𝜎 𝑧 =
1

1+𝑒−𝑧
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Activation Function: Hyperbolic Tangent 
Function (tanh)
• tanh 𝑧 =

𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
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Activation Function: Rectified Linear Unit 
(ReLU)
• ReLU 𝑧 = max(0, 𝑧)
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Activation Function: Leaky ReLU

• Leaky ReLU 𝑧 = ቊ
𝑧 if 𝑧 > 0
𝛼𝑧 if 𝑧 ≤ 0 

• Here 𝛼 is a small constant, typically 0.01.
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Terminology

• You will see both neural network and artificial neural network 
(ANN) used to describe these parametric models.
• ANN emphasizes that these parametric models are very different from 

biological neural networks.
• We will use both phrases, but will use the abbreviation ANN to 

differentiate from nearest neighbor (NN).
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Fully-Connected Feed-Forward Networks

• A fully-connected feed-forward ANN is one where each unit in the 
𝑖th layer:
• Takes the output of each unit in the (𝑖 − 1)th layer as input.
• Provides its output to each unit in the (𝑖 + 1)th layer.

𝑥𝑖 𝑓𝑤 𝑥𝑖

Input 
Layer

First 
Hidden 

Layer

Second 
Hidden 

Layer

Output 
Layer

…
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Recurrent Neural Network (RNN)

• Recurrent neural networks can have backwards connections 
between layers.

• These networks are typically run several times on the same input, 
and recurrent (backwards) edges provide values from the previous 
runs.
• Recurrent connections provide a form of “memory”

𝑥𝑖 𝑓𝑤 𝑥𝑖
…
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Skip Connections

• Skip connections are connections that skip over one or more 
layers.

𝑥𝑖 𝑓𝑤 𝑥𝑖
…
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What do different layers learn?

• Consider parametric models that take images as input.
• The layers closer to the input tend to learn low-level visual 

features.
• Later layers use these low-level features to learn about higher-

level features and concepts.

𝑥𝑖 𝑓𝑤 𝑥𝑖
… …

Fires if there is an edge passing through position 
(372, 981) in the image, at an angle of 43 degrees.

Fires if there is a cow in the image Fires if there is a cow jumping over the moon
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Learning Low-Level Features

• An ANN might use early layers to detect low-level features of an image
• One unit early in the network might “fire” when there is an edge at position (x,y) 

in the image, and the edge  is vertical.
• Another unit might fire when there is an edge at position (x,y) at an angle of 80 

degrees (nearly vertical).
• There may be different units for all of these features at each (x,y) coordinate in 

the image!

• Learning to separately detect the same feature at each location in the 
image is wasteful.

• Idea: Create a parametric model (layer for ANNs) that learns to find and 
represent features anywhere in the image.
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Convolutional Layer

• If an image is of size imgwidth × imgheight, create a parametric model, 
called a filter, that takes as input a small subregion of the image, called 
a patch.

imgheight

imgwidth

patchwidth

patchheight• This filter (small 
parametric model) is run 
on each patch in the 
image.
• The patches can overlap.
• Each patch is a fixed 

number of pixels over 
from the previous patch. 
This number is called the 
stride.
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One number, 
the “feature” 
value for this 
patch.

0.2
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One number, 
the “feature” 
value for this 
patch.

0.2
0.17
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One number, 
the “feature” 
value for this 
patch.

0.2
0.17

0.8
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

0.2
0.17

0.8
−2.1
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

0.2
0.17

0.8
−2.1

1.3
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

0.2
0.17

0.8
−2.1

1.3

−0.64

37



One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

At the end, the convolutional layer 
outputs all the computed values:
(0.2,0.17,0.8, −2.1, … , 1.3, −0.64, … )

0.2
0.17

0.8
−2.1

1.3

−0.64
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

At the end, the convolutional layer 
outputs all the computed values:
(0.2,0.17,0.8, −2.1, … , 1.3, −0.64, … )

These values are usually 
represented as a matrix to track the 
position of the patch they were 
computed from.

0.2 0.17 0.8 −2.1 1.3

−0.64 …
…
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Convolutional Layer (Graphical Depiction)

…

This represents a convolutional layer (blue) applied to an image.

A wider rectangle to 
denote that this is a matrix 
of numbers, not a vector.
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Convolutional Layer (summary)

• A convolutional layer can be viewed as a small parametric model 
(within the main parametric model) that has a relatively small number 
of parameters.
• This model is called a filter.

• The filter is applied to patches of an image.
• The outputs of the filter, for all patches, is viewed as the output of the 

convolutional layer.
• These outputs are represented as a matrix.
• The position in the matrix represents the position of the patch in the image.

• A single filter can learn features like “do two edges meet to form a 
corner in this patch?” or “is there a line at a specific angle in this 
patch?”
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Convolutional Layer (Multiple Filters)

• We typically want to learn more than one feature for each patch.
• For example, line detectors for lines at different angles.

• A convolutional layer, as described so far, learns only one feature.
• Convolutional layers can learn 𝑘 features by applying 𝑘 different 

filters (small parametric models) to each patch.
• Each filter produces one number for each patch.
• The outputs for each filter are stored as separate matrices, one per filter.
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Convolutional Layer

• A convolutional layer with multiple filters is represented using 
many stacked boxes:

…
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Convolutional Layer

• Convolutional layers can be applied in a sequence!

…
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Max Pooling Layers

• When using convolutional layers with many filters, you can end up with 
more outputs from the convolutional layer than there were pixels in the 
original image!

• To make the number of values more manageable, a max pooling layer 
can be used to downsample (reduce) the number of features.

• A max pooling layer acts like a convolutional layer, but without any 
parameters.
• For each patch, it returns the maximum value within the patch.
• Other pooling layers (e.g., average pooling layers) compute other fixed functions 

of a patch (e.g., the average value in the patch)
• A max pooling layer typically has a relatively wide stride and/or patch.

• For example, a 2x2 patch with no overlap between patches quarters the number of 
values. 45



Flattening Layers

• Convolutional layers output values in a matrix.
• One matrix per filter

• Typical feed-forward layers expect values as a vector.
• Flattening layers convert the output of convolutional layers into 

one long vector (rather than a set of matrices).
• Flattening layers have no tunable parameters, 𝑤.
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Example from Online:
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

• Number of channels = number of filters
• Some concepts beyond the scope of this class (e.g., padding)
• This model has 10 outputs, one per digit (more on this when 

we discuss classification) 47



Example from Online:
https://developersbreach.com/convolution-neural-network-deep-learning/

Softmax layers are used for classification. 
We’ll cover them soon!
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Example from Online:
https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-
for-off-target-prediction-The-input-of_fig2_327641553
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Example from Online:
https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-
network-consists-of-three-convolution-layers-with_fig3_353568132

CNN architecture for CIFAR-10/SVHN: The network consists of three convolution layers with 3 × 3 
filters, 0 padding and stride 1. The convolution layers are followed by a ReLU non-linearity. We use 
max pooling in this work with a filter size of 2 × 2, no padding and stride 2 which results in a 
downsampling of the features by a factor of 2. The three convolution layers have 6, 16 and 32 filters 
respectively. Finally, a Global Average Pooling (GAP) is applied and a fully connected (fc) outputs 
logits over the number of classes.

This refers to 
the size of 
each patch
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Example from Online: 
https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-
keras-tuner-on-cifar-10-b4271ca4643d
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Deep Learning Research

• A considerable amount of deep learning research involves 
experimenting with different network architectures.
• Architecture in the context of ANNs refers to which layers are used and 

how they are connected.

52



Example: Transformer
• A transformer is a type of neural network 

(a parametric model) designed to work 
with inputs that are sequences (e.g., 
words in a sentence, or sound in a song).

• They are beyond the scope of this class.

53



Summary

• Artificial neural networks (ANNs) are non-linear parametric 
models.

• They typically consist of “layers”
• Typical layers contain many units (perceptrons)
• Each unit is a linear model with a nonlinearity applied at the end

• Custom layers can be built for different purposes
• Convolutional layers are effective for learning low-level features in 

images.

• ANNs can have anywhere from a few dozen to many billion model 
parameters. (GPT-4 has roughly 175 billion parameters).
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Coming up…

To train the model, we need the derivative of the loss function with respect to each weight.
How can we compute the derivative with respect to this weight in the model?
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End
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