
COMPSCI 389
Introduction to Machine Learning

Neural Networks
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

1

Linear Parametric Models (review)

• Linear parametric models 𝑓𝑤 are linear with respect to the
weights, 𝑤, of the model.

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑚

𝑤𝑗𝜙𝑗 𝑥𝑖

2

Linear Model (Graphical Representation)

• Consider a linear parametric model without a basis function
(feature generator, 𝜙)

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖

3

Question: How can we make this model non-
linear w.r.t. the model parameters (weights 𝑤)?

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖

4

Answer: One way is to apply a non-linear
function, 𝜎, to the output.

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖𝜎

Question: Would 𝜎 𝑧 = 5𝑧
work?
Answer: No, this is a linear
function. This would be
equivalent to multiplying
each weight by 5. It doesn’t
change the functions that can
be represented.

Question: Would 𝜎 𝑧 = 𝑧2
work?
Answer: Yes, this would
result in a non-linear
parametric model.

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

2

Note: The function 𝜎 is often called an activation function, nonlinearity, threshold function, or squashing function.
Note: This parametric model (with any nonlinear 𝜎) is called a perceptron. 5

Alternative Perceptron Graphics

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖𝜎Σ

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

6

Alternative Perceptron Graphics

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑓𝑤 𝑥𝑖𝜎Σ

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

𝑤1

𝑤2

𝑤3

…

𝑤𝑑

7

Alternative Perceptron Graphics

𝑥𝑖 𝑓𝑤 𝑥𝑖𝜎Σ

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

8

Alternative Perceptron Graphics

𝑥𝑖 𝑓𝑤 𝑥𝑖

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

Note: This is most common when
working with many perceptrons,
connected together in some way.

9

Perceptron

Output from
previous neurons

Dendrites

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖𝜎Σ

Cell
Body

Axon

Perceptrons can be viewed as
extremely crude simulations of
neurons.
• Roughly speaking (ignoring

important aspects of biology and
neuroscience), when enough of
the inputs to a neuron are
activated, the neuron becomes
sufficiently stimulated and “fires”
(it becomes activated).

• We can select 𝜎 to be similar to a
threshold function.
• If the weighted sum is below

some threshold for the neuron
to be activated, 𝜎 outputs 0
(not firing).

• If the weighted sum is above
the threshold, 𝜎 outputs 1
(firing).

The “activation function” decides
whether the “neuron” is firing
based on the weighted sum.10

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖𝜎Σ

Threshold ≈ 15

Note: This model
typically outputs 0 or
1, which may not be
what we want for our
parametric model. We
will revisit this later.

Note: 𝜎 squashes the
output to the range
[0,1], hence the name
squashing function. 11

Perceptron vs Neuron

• Perceptrons are extremely crude models of real neurons.
• Real neurons do not switch between firing and not firing, but

instead change the rate at which they fire.
• More realistic parametric models of neurons are called “spiking neuron

models”
• Real neurons don’t just compute a weighted sum of the inputs.

• They consider the timing of different inputs arriving.
• Complex calculations can result from dendritic morphology.

• Neurons experience fatigue.
• Roughly speaking, when a neuron fires at a high rate for too long,

chemical changes force it to fire less frequently.
• And much, much more…

12

Training Non-Linear Parametric Models

• We train non-linear parametric models using gradient descent!
• Later we will discuss how the necessary derivatives can be

computed.

13

Neural Networks: Parametric Models
Comprised of Many Perceptrons
• Recall the graphical representation:

• Idea: Connect many perceptrons together.

𝑥𝑖 𝑓𝑤 𝑥𝑖

𝑥𝑖

… …

This is tedious and
too many arrows!

14

Neural Network Graphical Depiction

𝑥𝑖

… …

Idea: Use boxes to represent
layers (columns) of perceptrons.

𝑥𝑖
…

Here arrows between boxes
denote fully connected layers.
• Each perceptron in the right-

layer takes the output of each
perceptron in the left-layer as
input. 15

Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• In the context of neural networks, perceptrons are often called
units.

• Each layer can have different numbers of units.
• The number of units in a layer is often called the “size” of the layer.

Layer 1 Layer 2 Layer 3 Layer L

…

16

Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• The input, 𝑥𝑖 is called the input layer.
• The last layer is called the output layer.
• All layers between the input and output layers are called hidden

layers.

First
Hidden

Layer

Input
Layer

Second
Hidden
Layer

Third
Hidden

Layer

Output
Layer

…

17

Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• Sometimes the input layer is represented by its own rectangle.
• This layer simply outputs 𝑥𝑖.

Input
Layer

First
Hidden
Layer

Second
Hidden

Layer

Output
Layer

…

18

Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• The number of units in the output layer should equal the number
of outputs of 𝑓𝑤 𝑥𝑖

• For the GPA-prediction task, 𝑥𝑖 ∈ ℝ9 and 𝑦𝑖 ∈ ℝ.
• So, the output layer should have one unit.

Input
Layer

First
Hidden
Layer

Second
Hidden

Layer

Output
Layer

…

19

Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• If the output of the parametric model should not be “squashed” to
[0,1], the squashing function (activation function) can be omitted
from the output layer.

Input
Layer

First
Hidden
Layer

Second
Hidden

Layer

Output
Layer

…

20

Activation Function: Sigmoid

• Sigmoid functions are a class of S-shaped functions.
• The most common one is called the logistic function.

• It is so common that it is often called “the” sigmoid function.

• 𝜎 𝑧 =
1

1+𝑒−𝑧

21

Activation Function: Hyperbolic Tangent
Function (tanh)
• tanh 𝑧 =

𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧

22

Activation Function: Rectified Linear Unit
(ReLU)
• ReLU 𝑧 = max(0, 𝑧)

23

Activation Function: Leaky ReLU

• Leaky ReLU 𝑧 = ቊ
𝑧 if 𝑧 > 0
𝛼𝑧 if 𝑧 ≤ 0

• Here 𝛼 is a small constant, typically 0.01.

24

Terminology

• You will see both neural network and artificial neural network
(ANN) used to describe these parametric models.
• ANN emphasizes that these parametric models are very different from

biological neural networks.
• We will use both phrases, but will use the abbreviation ANN to

differentiate from nearest neighbor (NN).

25

Fully-Connected Feed-Forward Networks

• A fully-connected feed-forward ANN is one where each unit in the
𝑖th layer:
• Takes the output of each unit in the (𝑖 − 1)th layer as input.
• Provides its output to each unit in the (𝑖 + 1)th layer.

𝑥𝑖 𝑓𝑤 𝑥𝑖

Input
Layer

First
Hidden

Layer

Second
Hidden

Layer

Output
Layer

…

26

Recurrent Neural Network (RNN)

• Recurrent neural networks can have backwards connections
between layers.

• These networks are typically run several times on the same input,
and recurrent (backwards) edges provide values from the previous
runs.
• Recurrent connections provide a form of “memory”

𝑥𝑖 𝑓𝑤 𝑥𝑖
…

27

Skip Connections

• Skip connections are connections that skip over one or more
layers.

𝑥𝑖 𝑓𝑤 𝑥𝑖
…

28

What do different layers learn?

• Consider parametric models that take images as input.
• The layers closer to the input tend to learn low-level visual

features.
• Later layers use these low-level features to learn about higher-

level features and concepts.

𝑥𝑖 𝑓𝑤 𝑥𝑖
… …

Fires if there is an edge passing through position
(372, 981) in the image, at an angle of 43 degrees.

Fires if there is a cow in the image Fires if there is a cow jumping over the moon

29

Learning Low-Level Features

• An ANN might use early layers to detect low-level features of an image
• One unit early in the network might “fire” when there is an edge at position (x,y)

in the image, and the edge is vertical.
• Another unit might fire when there is an edge at position (x,y) at an angle of 80

degrees (nearly vertical).
• There may be different units for all of these features at each (x,y) coordinate in

the image!

• Learning to separately detect the same feature at each location in the
image is wasteful.

• Idea: Create a parametric model (layer for ANNs) that learns to find and
represent features anywhere in the image.

30

Convolutional Layer

• If an image is of size imgwidth × imgheight, create a parametric model,
called a filter, that takes as input a small subregion of the image, called
a patch.

imgheight

imgwidth

patchwidth

patchheight• This filter (small
parametric model) is run
on each patch in the
image.
• The patches can overlap.
• Each patch is a fixed

number of pixels over
from the previous patch.
This number is called the
stride.

31

One number,
the “feature”
value for this
patch.

0.2

32

One number,
the “feature”
value for this
patch.

0.2
0.17

33

One number,
the “feature”
value for this
patch.

0.2
0.17

0.8

34

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

0.2
0.17

0.8
−2.1

35

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

0.2
0.17

0.8
−2.1

1.3

36

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

0.2
0.17

0.8
−2.1

1.3

−0.64

37

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8, −2.1, … , 1.3, −0.64, …)

0.2
0.17

0.8
−2.1

1.3

−0.64

38

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8, −2.1, … , 1.3, −0.64, …)

These values are usually
represented as a matrix to track the
position of the patch they were
computed from.

0.2 0.17 0.8 −2.1 1.3

−0.64 …
…

39

Convolutional Layer (Graphical Depiction)

…

This represents a convolutional layer (blue) applied to an image.

A wider rectangle to
denote that this is a matrix
of numbers, not a vector.

40

Convolutional Layer (summary)

• A convolutional layer can be viewed as a small parametric model
(within the main parametric model) that has a relatively small number
of parameters.
• This model is called a filter.

• The filter is applied to patches of an image.
• The outputs of the filter, for all patches, is viewed as the output of the

convolutional layer.
• These outputs are represented as a matrix.
• The position in the matrix represents the position of the patch in the image.

• A single filter can learn features like “do two edges meet to form a
corner in this patch?” or “is there a line at a specific angle in this
patch?”

41

Convolutional Layer (Multiple Filters)

• We typically want to learn more than one feature for each patch.
• For example, line detectors for lines at different angles.

• A convolutional layer, as described so far, learns only one feature.
• Convolutional layers can learn 𝑘 features by applying 𝑘 different

filters (small parametric models) to each patch.
• Each filter produces one number for each patch.
• The outputs for each filter are stored as separate matrices, one per filter.

42

Convolutional Layer

• A convolutional layer with multiple filters is represented using
many stacked boxes:

…

43

Convolutional Layer

• Convolutional layers can be applied in a sequence!

…

44

Max Pooling Layers

• When using convolutional layers with many filters, you can end up with
more outputs from the convolutional layer than there were pixels in the
original image!

• To make the number of values more manageable, a max pooling layer
can be used to downsample (reduce) the number of features.

• A max pooling layer acts like a convolutional layer, but without any
parameters.
• For each patch, it returns the maximum value within the patch.
• Other pooling layers (e.g., average pooling layers) compute other fixed functions

of a patch (e.g., the average value in the patch)
• A max pooling layer typically has a relatively wide stride and/or patch.

• For example, a 2x2 patch with no overlap between patches quarters the number of
values. 45

Flattening Layers

• Convolutional layers output values in a matrix.
• One matrix per filter

• Typical feed-forward layers expect values as a vector.
• Flattening layers convert the output of convolutional layers into

one long vector (rather than a set of matrices).
• Flattening layers have no tunable parameters, 𝑤.

46

Example from Online:
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

• Number of channels = number of filters
• Some concepts beyond the scope of this class (e.g., padding)
• This model has 10 outputs, one per digit (more on this when

we discuss classification) 47

Example from Online:
https://developersbreach.com/convolution-neural-network-deep-learning/

Softmax layers are used for classification.
We’ll cover them soon!

48

Example from Online:
https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-
for-off-target-prediction-The-input-of_fig2_327641553

49

Example from Online:
https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-
network-consists-of-three-convolution-layers-with_fig3_353568132

CNN architecture for CIFAR-10/SVHN: The network consists of three convolution layers with 3 × 3
filters, 0 padding and stride 1. The convolution layers are followed by a ReLU non-linearity. We use
max pooling in this work with a filter size of 2 × 2, no padding and stride 2 which results in a
downsampling of the features by a factor of 2. The three convolution layers have 6, 16 and 32 filters
respectively. Finally, a Global Average Pooling (GAP) is applied and a fully connected (fc) outputs
logits over the number of classes.

This refers to
the size of
each patch

50

Example from Online:
https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-
keras-tuner-on-cifar-10-b4271ca4643d

51

Deep Learning Research

• A considerable amount of deep learning research involves
experimenting with different network architectures.
• Architecture in the context of ANNs refers to which layers are used and

how they are connected.

52

Example: Transformer
• A transformer is a type of neural network

(a parametric model) designed to work
with inputs that are sequences (e.g.,
words in a sentence, or sound in a song).

• They are beyond the scope of this class.

53

Summary

• Artificial neural networks (ANNs) are non-linear parametric
models.

• They typically consist of “layers”
• Typical layers contain many units (perceptrons)
• Each unit is a linear model with a nonlinearity applied at the end

• Custom layers can be built for different purposes
• Convolutional layers are effective for learning low-level features in

images.

• ANNs can have anywhere from a few dozen to many billion model
parameters. (GPT-4 has roughly 175 billion parameters).

54

Coming up…

To train the model, we need the derivative of the loss function with respect to each weight.
How can we compute the derivative with respect to this weight in the model?

55

End

56

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Linear Parametric Models (review)
	Slide 3: Linear Model (Graphical Representation)
	Slide 4: Question: How can we make this model non-linear w.r.t. the model parameters (weights w close paren ?
	Slide 5: Answer: One way is to apply a non-linear function, sigma, to the output.
	Slide 6: Alternative Perceptron Graphics
	Slide 7: Alternative Perceptron Graphics
	Slide 8: Alternative Perceptron Graphics
	Slide 9: Alternative Perceptron Graphics
	Slide 10: Perceptron
	Slide 11
	Slide 12: Perceptron vs Neuron
	Slide 13: Training Non-Linear Parametric Models
	Slide 14: Neural Networks: Parametric Models Comprised of Many Perceptrons
	Slide 15: Neural Network Graphical Depiction
	Slide 16: Neural Network (Graphical Depiction)
	Slide 17: Neural Network (Graphical Depiction)
	Slide 18: Neural Network (Graphical Depiction)
	Slide 19: Neural Network (Graphical Depiction)
	Slide 20: Neural Network (Graphical Depiction)
	Slide 21: Activation Function: Sigmoid
	Slide 22: Activation Function: Hyperbolic Tangent Function (tanh)
	Slide 23: Activation Function: Rectified Linear Unit (ReLU)
	Slide 24: Activation Function: Leaky ReLU
	Slide 25: Terminology
	Slide 26: Fully-Connected Feed-Forward Networks
	Slide 27: Recurrent Neural Network (RNN)
	Slide 28: Skip Connections
	Slide 29: What do different layers learn?
	Slide 30: Learning Low-Level Features
	Slide 31: Convolutional Layer
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Convolutional Layer (Graphical Depiction)
	Slide 41: Convolutional Layer (summary)
	Slide 42: Convolutional Layer (Multiple Filters)
	Slide 43: Convolutional Layer
	Slide 44: Convolutional Layer
	Slide 45: Max Pooling Layers
	Slide 46: Flattening Layers
	Slide 47: Example from Online: https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243
	Slide 48: Example from Online: https://developersbreach.com/convolution-neural-network-deep-learning/
	Slide 49: Example from Online: https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-for-off-target-prediction-The-input-of_fig2_327641553
	Slide 50: Example from Online: https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-network-consists-of-three-convolution-layers-with_fig3_353568132
	Slide 51: Example from Online: https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-keras-tuner-on-cifar-10-b4271ca4643d
	Slide 52: Deep Learning Research
	Slide 53: Example: Transformer
	Slide 54: Summary
	Slide 55: Coming up…
	Slide 56: End

