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Linear Parametric Models (review)

* Linear parametric models f,, are linear with respect to the
weights, w, of the model.

fw(x) = z wi;(x;)
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Linear Model (Graphical Representation)

* Consider a linear parametric model without a basis function
(feature generator, )
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Question: How can we make this model non-
linear w.r.t. the model parameters (weights w)?
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Answer: One way is to apply a non-linear
function, o, to the output.

2
Question: Would o(z) = 5z

d d
work? _— L) — CY .
Answer: No, this is a linear fW(xi) =0 z iji»j fW(xl) o Z W]xl»J

function. This would be
equivalent to multiplying

each weight by 5. It doesn’t Xi1
change the functions that can \ Wy
be represented. Xi2
\ W,
Question: Would ¢(2) = z? X3 > Wy 4@—> fw(xi)
work? .
Answer: Yes, thiswould ... ----""""

result in a non-linear / Wy
parametric model.

Note: The function o is often called an activation function, nonlinearity, threshold function, or squashing function.
Note: This parametric model (with any nonlinear o) is called a perceptron. 5



Alternative Perceptron Graphics
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Alternative Perceptron Graphics
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Alternative Perceptron Graphics
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Alternative Perceptron Graphics

d
fw(xi) =0 (Z iji,j)
j=1

Xi A’O_’ fw(xi)

Note: This is most common when
working with many perceptrons,
connected together in some way.



Perceptron

Perceptrons can be viewed as
extremely crude simulations of
neurons.

* Roughly speaking (ignoring
important aspects of biology and
neuroscience), when enough of
the inputs to a neuron are
activated, the neuron becomes
sufficiently stimulated and “fires”
(it becomes activated).

* We can select o to be similarto a
threshold function.

* |fthe weighted sum is below
some threshold for the neuron
to be activated, o outputs 0
(not firing).

* |fthe weighted sum is above
the threshold, o outputs 1

(firing).
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Note: This model
typically outputs 0 or
1, which may not be
what we want for our
parametric model. We
will revisit this later.

Note: 0 squashes the
output to the range
[0,1], hence the name
squashing function.
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Perceptron vs Neuron

* Perceptrons are extremely crude models of real neurons.

* Real neurons do not switch between firing and not firing, but
Instead change the rate at which they fire.
* More realistic parametric models of neurons are called “spiking neuron
models”
* Real neurons don’t just compute a weighted sum of the inputs.
* They consider the timing of different inputs arriving.
* Complex calculations can result from dendritic morphology.

* Neurons experience fatigue.

* Roughly speaking, when a neuron fires at a high rate for too long,
chemical changes force it to fire less frequently.

* And much, much more...
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Training Non-Linear Parametric Models

* We train non-linear parametric models using gradient descent!

* Later we will discuss how the necessary derivatives can be
computed.
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Neural Networks: Parametric Models
Comprised of Many Perceptrons

* Recall the graphical representation:

Xi _’Q_" fw(xi)

* |dea: Connect many perceptrons together.
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@ This is tedious and

\ too many arrows!
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Neural Network Graphical Depiction

Here arrows between boxes

denote fully connected layers.
Each perceptron in the right-
layer takes the output of each
perceptron in the left-layer as
input.

Idea: Use boxes to represent
layers (columns) of perceptrons.

> xi — —— nan
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Neural Network (Graphical Depiction)

e e e et Bl el 50

Layer1 Layer2 Layer3 Layer L

* In the context of neural networks, perceptrons are often called
units.

 Each layer can have different numbers of units.
* The number of unitsin a layer is often called the “size” of the layer.
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Neural Network (Graphical Depiction)

i = e ()
Input  First Second Output
Layer Hidden Hidden Layer

Layer Layer
* The input, x; is called the input layer.

* The last layer is called the output layer.

* All layers between the input and output layers are called hidden
layers.
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Neural Network (Graphical Depiction)

i = e £
Input  First Output
Layer Hidden Layer
Layer

* Sometimes the input layer is represented by its own rectangle.
* This layer simply outputs x;.
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Neural Network (Graphical Depiction)

i — — — e —p —> 1, (x;)

Input  First Output
Layer Hidden Layer
Layer

* The number of units in the output layer should equal the number
of outputs of f,, (x;)
* For the GPA-prediction task, x; € R” and y; € R.
* S0, the output layer should have one unit.
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Neural Network (Graphical Depiction)

i — — — e —p —> 1, (x;)

Input  First Output
Layer Hidden Layer
Layer

* If the output of the parametric model should not be “squashed” to
[0,1], the squashing function (activation function) can be omitted
from the output layer.
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Activation Function: Sigmoid

* Sigmoid functions are a class of S-shaped functions.
* The most common one is called the logistic function.

* [tis so common that itis often called “the” sigmoid function.
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Activation Function: Hyperbolic Tangent
Function (tanh)

62-—25

« tanh(z) = &=
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Activation Function: Rectified Linear Unit
(ReLU)

* ReLU(z) = max(0, z)

RelLU Function
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Activation Function: Leaky RelLU

z ifz>0
azifz<0
* Here a is a small constant, typically 0.01.

* Leaky ReLU(z) = {

Leaky RelU Function
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Terminology

* You will see both neural network and artificial neural network
(ANN) used to describe these parametric models.

* ANN emphasizes that these parametric models are very different from
biological neural networks.

* We will use both phrases, but will use the abbreviation ANN to
differentiate from nearest neighbor (NN).
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Fully-Connected Feed-Forward Networks

* A fully-connected feed-forward ANN is one where each unit in the
it layer:
 Takes the output of each unitin the (i — 1) layer as input.
* Provides its output to each unitin the (i + 1) layer.

e B e e I e €D

Input  First Output
Layer Hidden Layer
Layer
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Recurrent Neural Network (RNN)

e Recurrent neural networks can have backwards connections
between layers.

* These networks are typically run several times on the same input,
and recurrent (backwards) edges provide values from the previous
runs.

* Recurrent connections provide a form of “memory”

fw(xi)
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Skip Connections

* Skip connections are connections that skip over one or more
layers.

e I e N e Il e D
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What do different layers learn?

* Consider parametric models that take images as input.

* The layers closer to the input tend to learn low-level visual
features.

* Later layers use these low-level features to learn about higher-
level features and concepts.

X; = — — —p o — — — s - —> — —> f,(x;)

5 7 \

Fires if there is an edge passing through position Fires if there is a cow in the image Fires if there is a cow jumping over the moon
(8372, 981) in the image, at an angle of 43 degrees.
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Learning Low-Level Features

* An ANN might use early layers to detect low-level features of an image

* One unit early in the network might “fire” when there is an edge at position (x,y)
in the image, and the edge is vertical.

* Another unit might fire when there is an edge at position (x,y) at an angle of 80
degrees (nearly vertical).
* There may be different units for all of these features at each (x,y) coordinate in
the image!
* Learning to separately detect the same feature at each location in the
Image is wasteful.

* ldea: Create a parametric model (layer for ANNSs) that learns to find and
represent features anywhere in the image.
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Convolutional Layer

* If an image is of size Imgyiqin X IMBpeight, Create a parametric model,
called a filter, that takes as input a small subregion of the image, called

a patch.

* This filter (small
parametric model) is run
on each patch in the
Image.

* The patches can overlap.

* Each patch is a fixed
number of pixels over
from the previous patch.
This number is called the
stride.

patChheight

31
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One number,
the “feature”
value for this
patch.
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One number,
the “feature”
value for this
patch.
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One number,
the “feature”
value for this
patch.
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One number,

& . the featurg
value for this

patch.

The patch is shifted over by stride
number of pixels each time.
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One number,

& _, the“feature
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.
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One number,

& _, the“feature
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.
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One number,

& . the featurg
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8,—-2.1, ...,1.3,—0.64, ...)
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One number,

& _, the“feature
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8,—-2.1, ...,1.3,—0.64, ...)

These values are usually
represented as a matrix to track the
position of the patch they were
computed from. 3




Convolutional Layer (Graphical Depiction)

\ A wider rectangle to
denote that this is a matrix
of numbers, not a vector.

This represents a convolutional layer (blue) applied to an image.
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Convolutional Layer (summary)

* A convolutional layer can be viewed as a small parametric model
(within the main parametric model) that has a relatively small number
of parameters.

* This model is called a filter.
* The filter is applied to patches of an image.

* The outputs of the filter, for all patches, is viewed as the output of the
convolutional layer.
* These outputs are represented as a matrix.
* The position in the matrix represents the position of the patch in the image.

* A single filter can learn features like “do two edges meet to form a
corner in this patch?” or “is there a line at a specific angle in this
patch?”
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Convolutional Layer (Multiple Filters)

* We typically want to learn more than one feature for each patch.
* For example, line detectors for lines at different angles.

* A convolutional layer, as described so far, learns only one feature.

 Convolutional layers can learn k features by applying k different
filters (small parametric models) to each patch.

* Each filter produces one number for each patch.
* The outputs for each filter are stored as separate matrices, one per filter.
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Convolutional Layer

* A convolutional layer with multiple filters is represented using
many stacked boxes:

[/
[/
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Convolutional Layer

* Convolutional layers can be applied in a sequence!

/,,
;
/

44



Max Pooling Layers

* When using convolutional layers with many filters, you can end up with
more outputs from the convolutional layer than there were pixels in the

original image!

* To make the number of values more manageable, a max pooling layer
can be used to downsample (reduce) the number of features.

* A max pooling layer acts like a convolutional layer, but without any

parameters.
* For each patch, it returns the maximum value within the patch.
* Other pooling layers (e.g., average pooling layers) compute other fixed functions
of a patch (e.g., the average value in the patch)
* A max pooling layer typically has a relatively wide stride and/or patch.

* For example, a 2x2 patch with no overlap between patches quarters the number of
values. 45



Flattening Layers

* Convolutional layers output values in a matrix.
* One matrix per filter

* Typical feed-forward layers expect values as a vector.

* Flattening layers convert the output of convolutional layers into
one long vector (rather than a set of matrices).
* Flattening layers have no tunable parameters, w.
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Example from Online:

https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 /—M

(5 X 5) kerr.\el Max-Pooling (5 X 5) ke":'el Max-Pooling (with
valid padding (2x2) valid padding (2x2) \.dropout)

A A

'4 N r N

\\ | / \
| - / 4
nl channels nl channels n2 channels n2 channels \|| « [/ ' 9
| e

INPUT
(24 x 24 x n1) (12x12xnl) (8x8xn2) (4x4xn2) OUTPUT

(28 x 28 x 1)

n3 units

* Number of channels = number of filters
« Some concepts beyond the scope of this class (e.g., padding)

* This model has 10 outputs, one per digit (more on this when
we discuss classification)
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Example from Online:

https://developersbreach.com/convolution-neural-network-deep-learning/

Softmax layers are used for classification.
Convolution Neural Network (CNN)  VVe'llcoverthem soon!

Input

Pooling Pooling Pooling i

N L\
- Yo o Nk
I % A 7
e - _\‘-“"‘“—‘ ) J
L :\ y
N || Softhx
Convolution Convolution  Convolution = Pﬁﬁtr']\éat%c:]n
+ + +
RelU ReLU RelLU Flatten
Layer
Fully
< Feature Maps Connected——
Layer
Feature Extraction Classification Probabilistic
Distribution

48



Example from Online:

https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-
for-off-target-prediction-The-input-of_fig2_327641553

Input Conv Layer BN Layer Pooling Layer Flatten Layer 2 Dense Layers Output
23*4 40%(23*1) 40%(23*1) 40*(5*1) 1200 1*100 123 12

Convolution - Max-Pooling Fully-Connected
40 ﬁ“ﬂ.m Batch Normalization With 1°5 filter Flatten Dropout Softmax
4 filter sizes stride 5 keep prob:0.85
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Example from Online:

https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-
network-consists-of-three-convolution-layers-with_fig3_353568132

7

convi

ey R AP S =t This refers to
{52 2 100)

Pocjit P the size of
(37= 1)
each patch

CNN architecture for CIFAR-10/SVHN: The network consists of three convolution layers with 3 x 3
filters, 0 padding and stride 1. The convolution layers are followed by a ReLU non-linearity. We use
max pooling in this work with a filter size of 2 x 2, no padding and stride 2 which results in a
downsampling of the features by a factor of 2. The three convolution layers have 6, 16 and 32 filters
respectively. Finally, a Global Average Pooling (GAP) is applied and a fully connected (fc) outputs
logits over the number of classes.

50



Example from Online:

https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-
keras-tuner-on-cifar-10-b4271ca4643d

/ A7

= = I =
» 2/ o ] = Danger
LA . - I
< /f g L
Wy 11 — = =
/ ]’ 2 — 5 =
Lr,’f'.'-".\r (LV / : :
) = O ] - Damaged
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN coﬁﬁ&uo SOFTMAX
\ 7 ~ I N _J
Aircraft Structural Condition

Feature Learning

Sensing Input Classification
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Deep Learning Research

* A considerable amount of deep learning research involves
experimenting with different network architectures.

* Architecture in the context of ANNs refers to which layers are used and
how they are connected.
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Example: Transformer

* Atransformer is a type of neural network
(a parametric model) desighed to work
with inputs that are sequences (e.g.,

words in a sentence, or sound in a song).

* They are beyond the scope of this class.

4 1
MatMul Linear
T T i
SoftMax Concat
)
Maskf(opt.) < Scaled Dot-Product JL .
Seal Attention <
cale A [ ‘ n[ n[
1
MatMul Linear Linear Linear

Q K Vv | | |
V K Q

Output
Probabilities

I Softmax |
t
| Linear |}
q h
| Add & Norm Je=
Feed
Forward
- I ~ | Add & Norm Je—~
> Add & Norm } Multi-Head
Feed Attention
Forward 3’ 7 Nx
| ( J~
Add & Norm
Nx T
~»| Add &.Norm ] Masked
I' Multi-Head Multi-Head
Attention Attention
A1 ) A4+
k_ J \ J)
Positional @_@ O—@ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
Figure 1: The Transformer - model architecture.



Summary

* Artificial neural networks (ANNs) are non-linear parametric
models.

* They typically consist of “layers”
* Typical layers contain many units (perceptrons)
* Each unitis a linear model with a nonlinearity applied at the end

 Custom layers can be built for different purposes

* Convolutional layers are effective for learning low-level features in
images.

* ANNs can have anywhere from a few dozen to many billion model
parameters. (GPT-4 has roughly 175 billion parameters).
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Coming up...

Convolution Neural Network (CNN)

Input

Pooling Pooling Pooling

Convglution
RelLU

Convgl ution Convglution
Kernel RelU RelU

Output
Horse

Zebra
Dog

7 Yo/

R @41\

L v‘\:‘g -
W SoftMax

' Activation
Function

(111

Flatten
Layer

A

Feature Maps \

Feature Extraction

Probabilistic

Classification Distribution

To train the model, we need the derivative of the loss\function with respect to each weight.
How can we compute the derivative with respect to this weight in the model?



Serating

Thank you.

Degginmenic
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